## Week 35 class work TEST:

## Select your team of at most 4 members

## Build and Compute the volume of a Dodecahedron



Given: 12 Regular Pentagons with side length of 16 cm :
Place software on USB.
http://www.mathsisfun.com/geometry/dodecahedron.html
See the site above, rotating dodecagon and more information about dodecagon.

## Dodecahedron

## Dodecahedron Facts

## Notice these interesting things:

- It has 12 Faces
- Each face has 5 edges (a pentagon)
- It has 30 Edges
- It has 20 Vertices (corner points)
- and at each vertex 3 edges meet
- It is one of the Platonic Solids


## Appendix A-- Combined Reference Charts

| Polyhedron | Volume ( $\mathbf{s}^{\mathbf{3}}$ ) | Volume ( $\mathrm{r}^{3}$ ) | Surface Area ( $\mathbf{s}^{2}$ ) | Surface Area ( $\mathrm{r}^{2}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| Tetrahedron | $0.11785113 \mathrm{~s}^{3}$ | $0.513200238 \mathrm{r}^{3}$ | $1.732050808 \mathrm{~s}^{\mathbf{2}}$ | $4.618802155 \mathrm{r}^{2}$ |
| Octahedron | $0.471404521 \mathrm{~s}^{3}$ | 1.333333... $\mathrm{r}^{3}$ | $3.464101615 \mathrm{~s}^{2}$ | $6.92820323 \mathrm{r}^{2}$ |
| Cube | $1.0 \mathrm{~s}^{3}$ | $1.539600718 \mathrm{r}^{3}$ | $6.0 \mathrm{~s}^{2}$ | $8.0 \mathrm{r}^{2}$ |
| Icosahedron | $2.181694991 \mathrm{~s}^{3}$ | $2.53615071 \mathrm{r}^{3}$ | $8.660254038 \mathrm{~s}^{2}$ | $9.574541379 \mathrm{r}^{\mathbf{2}}$ |
| Dodecahedron | $7.663118963 \mathrm{~s}^{3}$ | $2.785163863 \mathrm{r}^{3}$ | $20.64572881 \mathrm{~s}^{2}$ | $10.51462224 \mathrm{r}^{2}$ |
| Cube <br> Octahedron | $2.357022604 \mathrm{~s}^{3}$ | $2.357022604 \mathrm{r}^{3}$ | $9.464101615 \mathrm{~s}^{2}$ | $9.464101615 \mathrm{r}^{2}$ |
| Rhombic Dodecahedron | $8.485281375 \mathrm{r}^{2}$ <br> (distance to 6 octahedral vertices) | $3.079201436 \mathrm{~s}^{3}$ | $2.0 \mathrm{r}^{3}$ (distance to 6 octahedral vertices) | $11.3137085 \mathrm{~s}^{2}$ |
| Icosa <br> Dodecahedron | $13.83552595 \mathrm{~s}^{3}$ | $3.266124627 \mathrm{r}^{3}$ | $29.30598285 \mathrm{~s}^{\mathbf{2}}$ | $11.19388937 \mathrm{r}^{2}$ |

